

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、<p><b> 中文3687字</b></p><p><b> 畢業(yè)論文外文翻譯</b></p><p> 外文題目:ECONOMIC FUNDAMENTALS IN LOCAL HOUSING MARKETS: EVIDENCE FROM U.S. METROPOLITAN REGIONS
2、 </p><p> 出 處: JOURNAL OF REGIONAL SCIENCE,2006,46(8):425-453 </p><p> 作 者: Min Hwang John M. Quigley </p><p><b> 原 文
3、:</b></p><p><b> ABSTRACT</b></p><p> This paper investigates the effects of national and regional economic conditions on outcomes in the single-family housing market; housin
4、g prices, vacancies, and residential construction activity. Our three-equation model confirms the importance of changes in regional economic conditions, income, and employment on local housing markets. The results also p
5、rovide the first detailed evidence on the importance of vacancies in the owner-occupied housing market on housing prices and supplier activities</p><p> INTRODUCTION</p><p> Housing markets ar
6、e local, and housing market outcomes reflect local economic conditions. Housing prices are hid up as a result of better employment opportunities and higher incomes enjoyed by residents in an expanding metropolitan market
7、. Changes in the distribution of income are reflected in the distribution of prices and housing amenities. Similarly, housing vacancy rates can be expected to decline when the local economy improves and as the demand for
8、 housing increases. Finally, residential c</p><p> This paper considers the inter-relationship among these three forms of economic behavior in the context of local housing markets. We model the relationship
9、 among the prices of owner-occupied housing, vacancy rates, and housing supplier activity in response to the exogenous factors, which affect the fortunes of the regional economy. We also recognize the importance of local
10、 land use and building regulations in affecting the operation of the owner-occupied housing market.</p><p> Our analysis uses U. S. metropolitan areas (MSAs) as units of observation, and we follow a panel o
11、f 74 MSAs over the 13-year period, 1987-1999. The panel includes all U.S. metropolitan areas for which annual data are available on the prices of owner—occupied housing, on the vacancy rates in single-family housing, and
12、 on supplier activity (i.e., the number of permits issued for construction of new single-family housing).</p><p> In this paper, we develop a model relating exogenous changes in regional employment and inco
13、mes, construction costs and macro economic conditions to these measures of the health of housing markets—prices, vacancies, and new construction. The model is estimated in several variants, and we simulate the responsive
14、ness of the housing market to local economic conditions. The model indicates the strong interdependency between the state of the macro economy, the state of the regional economy, and outco</p><p> In Sectio
15、n 2 below, we relate our work to previous attempts to develop regional models of the housing market. Section 3 presents an overview of the data and the methodology we use, as well as the relationships among the various m
16、easures of the housing market. Section 4 presents data. Section 5 presents our statistical results and the simulations based upon them. Section 6 is a brief conclusion.</p><p> ANTECEDENTS</p><p&
17、gt; A simple model of supply and demand at the regional level motivates the choice of variables to explain outcomes in the housing market over time. Housing demand is a function of prices and incomes and perhaps demogra
18、phic variables as well. Housing supply is a function of profitability, which depends upon housing prices and input prices, including the costs of labor, materials, financing, and regulations inhibiting new construction.
19、Vacancy rates in existing housing reflect the difference between </p><p> Several early papers (following Reid, 1962; Muth, 1960, 1968) analyzed variations in housing prices across metropolitan areas, focus
20、ing on the reduced form of relationship between the prices of owner-occupied housing and metropolitan characteristics. Using these models, it is easy to describe the development of house prices, but it is quite difficult
21、 to make inferences about structural parameters or about causation.</p><p> In contrast, a few more recent studies have investigated structural relationships among housing market outcomes. Poterba (1984) an
22、alyzed the interaction between movements in prices and housing stocks, modeled as a two-equation system. The growth of housing prices is represented as a function of the difference between current prices and imputed rent
23、als, while the growth of the housing stock is related to real housing prices {as a proxy for profitability) and to the size of the current stock. In t</p><p> DiPasquale and Wheaton (1994) specified a model
24、 for housing demand in which the price of owner-occupied housing within a given housing market is a function of the current stock of single-family housing relative to the number of households, their age-expected homeowne
25、rship rate,* the cost of renting relative to owning in the market, and the average household income within the market. In a second equation, the authors modeled housing starts as a function of current prices, costs, and
26、the stock of </p><p> OVERVIEW OF THE MODEL</p><p> Our model of regional housing markets is based upon a panel of U.S. metropolitan areas, including all markets for which annual data on housi
27、ng prices, vacancies, and construction activity are available for owner-occupied housing. Of the 334 metropolitan housing markets (MSAs) in the United States, consistent measures of house prices are available for 120, be
28、ginning in 1975. Annual measures of the stock of owner-occupied housing, vacancy rates, and supplier activity (i.e., building permits) are a</p><p> Our empirical model consists of three equations describin
29、g the movement of housing prices, housing supply, and vacancies in the market for owner-occupied housing. In this section, we describe the key features of the model, deferring issues related to data, measurement, and est
30、imation technique to Section IV.</p><p> New Housing Supply</p><p> In contrast to the analysis of housing demand and price formation, less is known about the behavior of housing supply. In pa
31、rt, this reflects limitations in available data and in conceptual models (Rosenthal, 1999). DiPasquale (1999) has summarized three empirical difficulties in the housing supply literature. First, estimated housing supply
32、elasticties vary widely. Second, price does not seem to be a sufficient statistic, and other market indicators are quite important in explaining housing sup</p><p> We follow Mayer and Somerville, modeling
33、new housing supply as a function of changes in prices and input costs, as well as macroeconomic conditions. Our model is</p><p><b> St=</b></p><p> where St is new housing supply,
34、Vt represents vacancies, Ct is input costs for labor and materials, ft is financing costs, REGt is the restrictiveness of local regulation, and x represents other supply shifters. We measure new supply as the annual diff
35、erence in the stock of housing; the stock is constructed by adding building permits to the stock in the previous year. Again, lower case letters indicate logarithmic differences. Note that this specification of the suppl
36、y equation includes two endo</p><p> Finally, as noted above, there is ample evidence that supply adjustment to changes in price is sluggish and slow. We recognize this by including a variable measuring the
37、 lagged change in housing prices in the empirical model.</p><p> Vacancies in Owner-Occupied Housing</p><p> The early literature on vacancy in the rental housing market analyzed the empirical
38、 relationship between some "natural" rate of vacancy and housing rents, based on reduced form models (Eubank and Sirmans, 1979; Rosen and Smith, 1983). Theoretical explanations of vacancy focus on the frictions
39、 of search, given the idiosyncratic preferences of households and the heterogeneity of housing units (Arnott, 1989; Wheaton, 1990; Read, 1997). In these models, some level of vacancy facilitates the search p</p>&
40、lt;p> If a homeowner chooses to keep a unit vacant rather than selling in response to an offer, this is a decision to hold a real option. That is, when the owner of a vacant unit decides to keep a unit vacant rather
41、than selling it at the current market price, this is because she believes that waiting is worthwhile. Waiting is more worthwhile if prices are expected to increase and if the volatility of housing investment returns is l
42、arger.</p><p> DATA AND METHODOLOGY</p><p><b> Data</b></p><p> The econometric evidence presented in the following section is based on data pieced together from a va
43、riety of sources. With one exception, the data series are publicly available, and most are available online. As noted above, we analyze three dependent variables: prices, vacancies, and supplier activity.</p><
44、p> Single-family housing prices are measured using metropolitan housing price indices published by the U.S. Office of Federal Housing Enterprise Oversight (OEHEO). The index is defined by the weighted repeat sales me
45、thod using all single-family houses whose mortgages have been purchased or securitized by Freddie Mac or Fannie Mae since 1975.</p><p> Homeowner vacancy rates by MSA are available annually from the U.S. Bu
46、reau of the Census.</p><p> We measure supplier activity by the number of building permits issued for single-family housing in each MSA. Most prior research on housing supply is based upon aggregate housing
47、 starts (Topel and Rosen, 1988; DiPasquale and Wheaton, 1994; Mayer and Somervile, 2000). Information on housing starts is simply unavailable at the metropolitan level. However, it is well known that the aggregate series
48、 on permits tracks housing starts very closely (Evenson, 2001; Somervile, 2001).^''' Other studies ana</p><p> We also employ several other exogenous variables in the three equations to measure
49、the importance of the local economy. These include per capita income, Yt, employment, EMt, and per capita transfer payments for unemployment, UNt. These data are all available from the REIS database.</p><p>
50、 A complete listing of variables, definitions and symbols is presented inTable . The subscripts i and t designate variables which vary by MSA and year.</p><p> 5. CONCLUSION</p><p> This pape
51、r estimates the effects of national and regional economic conditions on local housing markets using a panel of U.S. metropolitan areas over a 14-year period. We estimate the effects of exogenous conditions on the prices
52、and vacancy rates for owner-occupied single-family housing, and on building permits issued for new construction of single-family housing. The parameters are estimated by two-stage least squares in an error components fra
53、mework.</p><p> The empirical models provide a coherent set of empirical and simulation results. The results confirm the importance of changes in regional economic conditions, income and employment, upon lo
54、cal housing markets, and they confirm the importance of lagged adjustment processes on both the demand and supply sides of the market. The results also provide the first detailed evidence on the importance of vacancies i
55、n the owner-occupied housing market on housing prices and supplier activity. The results a</p><p> Simulation exercises, using standard impulse response analyses, document the lags in market responses to en
56、dogenous shocks and the variations in response predicted from a common model depend greatly upon local conditions. Finally, the results suggest the importance of local regulation in affecting the pattern of market respon
57、ses to regional economic conditions. In more regulated markets, levels of housing prices are higher in response to endogenous shocks, and the price increases are far more pe</p><p><b> 譯 文:</b>
58、;</p><p> 住房市場的經(jīng)濟(jì)基本原理:依據(jù)美國大城市的住宅狀況</p><p><b> 摘要</b></p><p> 本文探討了國家和區(qū)域的經(jīng)濟(jì)效應(yīng)基礎(chǔ)條件對住宅市場;房產(chǎn)價(jià)格,空置率和居民住宅建設(shè)的影響。我們的3個(gè)方程式模型體現(xiàn)了區(qū)域經(jīng)濟(jì)條件,收入,和住宅房屋市場的雇傭關(guān)系變化的重要性。結(jié)果還首次提供了確鑿的證據(jù)證明空置率對
59、業(yè)主房市場的房價(jià)和供應(yīng)商的活動有重要的影響。結(jié)果也證明材料,勞動和資本成本變化的重要性,和用標(biāo)準(zhǔn)的脈沖響應(yīng)模型對新供應(yīng)模擬模式的影響, 同時(shí)也反映了市場對外源沖擊和不同地方的參數(shù)差異反應(yīng)滯后。結(jié)果還顯示,地方性法規(guī)對市場反應(yīng)地區(qū)收入沖擊的模式有重要的影響。</p><p><b> 簡介</b></p><p> 當(dāng)?shù)氐淖》渴袌龊妥≌袌龅漠a(chǎn)出反映本地經(jīng)濟(jì)條件。房
60、價(jià)的隱藏是由于在不斷擴(kuò)大的都市居民有更好的就業(yè)機(jī)會和更高的收入。收入分配的改變主要體現(xiàn)在房價(jià)的分配和住房待遇的分配。同樣,當(dāng)?shù)亟?jīng)濟(jì)改善和住宅需求的增加時(shí),住宅的空置率就會降。最后,住宅建設(shè)和建筑活動對房價(jià),閑置率和當(dāng)?shù)亟?jīng)濟(jì)的健康有重要的影響。高收入增加了住宅的需求,因此房價(jià)被抬高;買新建房成了有利可圖的事,誘導(dǎo)著供應(yīng)商的活動。有些閑置的住宅等待著被重新利用,有些住宅通過整修被重新利用。</p><p> 本文討
61、論了住宅房屋市場的3種經(jīng)濟(jì)行為的內(nèi)在關(guān)系。我們建立業(yè)主房 ,空置率和住宅供應(yīng)商活動與外源因數(shù)想對應(yīng)的關(guān)系影響了區(qū)域經(jīng)濟(jì)的模型。我們也認(rèn)識到區(qū)域土地的使用和建筑條例對業(yè)主房市場有重要的影響。</p><p> 我們把美國大都市(MSAs)作為觀察單位,并遵從美國74了城市在13年內(nèi)(1987——1999)的變化數(shù)據(jù)。這個(gè)組數(shù)據(jù)包括所有美國城市業(yè)主房的價(jià)格,住宅的閑置率和供應(yīng)商的活動(例如,允許建設(shè)的房屋的數(shù)量)。
62、</p><p> 在本文中,我們提供一種涉及區(qū)域就業(yè)和收入,建設(shè)成本和宏觀經(jīng)濟(jì)條件的變化和測量健康住宅市場的模型,這些措施包括房價(jià),閑置,和新的建筑。該模型有幾個(gè)變體,我們假設(shè)房屋市場和區(qū)域經(jīng)濟(jì)條件是有關(guān)聯(lián)的。該模型表明國家宏觀經(jīng)濟(jì),區(qū)域經(jīng)濟(jì)和房地產(chǎn)市場的產(chǎn)出之間有很大的相互依賴性。結(jié)果還表明地方性法規(guī)在房產(chǎn)市場的產(chǎn)出方面起著關(guān)鍵的作用。</p><p> 在下面的第2節(jié),我們試圖建
63、立房地產(chǎn)市場的區(qū)域模型。第三節(jié)概述了的數(shù)據(jù)和方法論的,以及各種測量房地產(chǎn)市場措施的關(guān)系。第四節(jié)給出數(shù)據(jù)。第5條給出重要的統(tǒng)計(jì)結(jié)果和基于這些數(shù)據(jù)的模擬。第6部分是總結(jié)。</p><p><b> 前言</b></p><p> 先是一個(gè)簡單的模型。一個(gè)地方的供給與需求水平刺激對房地產(chǎn)市場產(chǎn)出的解釋選擇不同的變量。房屋的需求是一個(gè)關(guān)于物價(jià)和收入的函數(shù),也許人口統(tǒng)計(jì)學(xué)的
64、變量。房屋供應(yīng)是一個(gè)關(guān)于利潤的函數(shù),這取決于房價(jià)和投入的價(jià)格,投入的價(jià)格包括勞動力成本、材料、資金、約束新建房的法規(guī)。閑置率的存在反應(yīng)了在任何時(shí)期總供給和總需求之間存在差異。</p><p> 一些早期報(bào)告(following Reid, 1962; Muth, 1960, 1968)分析了在大城市里房價(jià)的變量,把業(yè)主房的價(jià)格和大城市的特點(diǎn)的關(guān)系簡約化。使用這些模型,很容易描述房價(jià)的變化,但去推論結(jié)構(gòu)參數(shù)或者原
65、因是非常困難的。</p><p> 相反,更多的最近的研究報(bào)告調(diào)查了內(nèi)在結(jié)構(gòu)和房地產(chǎn)市場產(chǎn)出之間的關(guān)系。Poterba(1984)分析了住房數(shù)量和價(jià)格的相互關(guān)系,把它們轉(zhuǎn)化為2個(gè)方程式的關(guān)系。房屋價(jià)格的增長是一個(gè)關(guān)于現(xiàn)在價(jià)格和估算租金之間不同關(guān)系的函數(shù),而增長的住宅數(shù)與真正的房價(jià){作為盈利的替代)和流通股票的價(jià)格是有關(guān)系的。在這個(gè)簡單的股票和現(xiàn)金的模型中,沒有線索或滯后效應(yīng)。閑置房的股票忽略不計(jì)。</p&
66、gt;<p> DiPasquale和惠頓(1994)說明了房屋的需求的一個(gè)模型,業(yè)主房的價(jià)格在某個(gè)特定的房地產(chǎn)市場環(huán)境中是一個(gè)關(guān)于當(dāng)前住宅房的股票與家庭的數(shù)量,他們預(yù)期的住房率,在目前市場上房屋出租的費(fèi)用,以及該市場平均家庭收入的函數(shù)。在第二個(gè)方程中,他們定義房產(chǎn)的開工率是一個(gè)關(guān)于市價(jià)、成本和住房股票,以及市場上就業(yè)和時(shí)間的函數(shù)。在該模型中大多數(shù)供應(yīng)商的行為說明了市場上的利率、就業(yè)水平和時(shí)間是外在的變化因素。他們把最后
67、的變量解釋為住房市場緩慢調(diào)整的證據(jù)。</p><p><b> 3.模型的概述</b></p><p> 我們的區(qū)域房地產(chǎn)市場模型是依據(jù)美國大城市地區(qū)的數(shù)據(jù)。這個(gè)組數(shù)據(jù)包括所有美國城市業(yè)主房的價(jià)格,住宅的閑置率和業(yè)主房的建設(shè)。在美國334個(gè)大城市房地產(chǎn)市場(MSAs)中,從1975年開始有120個(gè)房地產(chǎn)市場采取房價(jià)一致的措施。在1987-1999期間只有75個(gè)房地
68、產(chǎn)市場把業(yè)主房的股票,閑置率,供應(yīng)商的活動(例如,建筑許可證)當(dāng)做年度措施。我們的分析是基于1987-1999期間74個(gè)大城市市場的962組年度觀察值。</p><p> 我們的實(shí)驗(yàn)?zāi)P桶P(guān)于房價(jià)的波動,住房供給,以及業(yè)主房空缺的三個(gè)方程式。在這一節(jié)中,我們主要描述這個(gè)模型的延期數(shù)據(jù),測量,和估計(jì)技術(shù)的特點(diǎn)。</p><p><b> 新建房屋的供應(yīng)</b>&l
69、t;/p><p> 與住房需求及價(jià)格形成理論相對應(yīng)的是很少人知道的住房供應(yīng)行為理論。在某種程度上,這反映了可利用的數(shù)據(jù)和概念模型的局限(Rosenthal,1999)。DiPasquale(1999)歸納了在房屋供應(yīng)文獻(xiàn)中三個(gè)實(shí)證的困難點(diǎn)。首先,假設(shè)房屋供應(yīng)的數(shù)據(jù)有著很大的不同。第二,在解釋住房供應(yīng)理論中,價(jià)格并不是一個(gè)足夠的因素,其他的市場指標(biāo)卻是非常的重要。第三,建設(shè)水平對建設(shè)成本和產(chǎn)出的價(jià)格反應(yīng)遲緩。此外還有
70、關(guān)于住房供應(yīng)模型恰當(dāng)說明的不同意見。在早期的研究中,新房屋供應(yīng)、房產(chǎn)許可的標(biāo)準(zhǔn)都是根據(jù)價(jià)格水平和施工成本規(guī)定的(Porterba,1984;Topel和Rosen,1988;DiPasquale 和Wheaton,1994)。最近,Mayer和Somervile(2000)發(fā)明了一種把新住房供應(yīng)與價(jià)格及成本的變化相連接的實(shí)驗(yàn)?zāi)P?。他們認(rèn)為住房價(jià)格的平均水平與住房空間總需求的住房供應(yīng)股票相適應(yīng),它暗示新房屋的建設(shè)以房價(jià)的變化,以及其他可變
71、量的變化如施工成本為依據(jù)的。</p><p> 我們依據(jù)Mayer和somervill的新住房供給為價(jià)格變動和投入的費(fèi)用以及宏觀經(jīng)濟(jì)條件的函數(shù)建模。我們的模型是</p><p><b> St=</b></p><p> St是新房屋的供應(yīng)、Vt代表空缺,Ct勞動投入成代表勞動成本和材料的投入,Ft是資金成本、REG是地方性法規(guī),x代表其
72、他供應(yīng)。我們測量在每年不同的住房股票下的新建房屋的供應(yīng);股票由上一年增加的建筑許可證決定。然后,小寫字母表示對數(shù)的差異。注意:這個(gè)供應(yīng)方程式說明包括兩個(gè)內(nèi)在的變量,房價(jià)的變化和空缺房的變化。我們希望提高住房價(jià)格可以增加供應(yīng)商的活動。增加投入的成本(勞動力、材料或資本)和空缺房會降低供應(yīng)商活動。</p><p> 最后,如上所述,我們有充分的證據(jù)證明供應(yīng)調(diào)整對價(jià)格的變化反應(yīng)滯后。我們通過一個(gè)變量測量房價(jià)的滯后變化
73、的模型認(rèn)識到這一點(diǎn)。</p><p><b> 業(yè)主房的空置</b></p><p> 早期關(guān)于空置租賃房產(chǎn)市場的文獻(xiàn)基于簡化模型(Eubank和Sirmans,1979年,Rosen和Smith,1983年)分析了“自然”的空缺和房屋租金的實(shí)驗(yàn)關(guān)系。有關(guān)空缺的理論解釋關(guān)注找房過程中的摩擦,要考慮到家庭的特質(zhì)和房屋單位的不均勻性(Arnott,1989;Wheat
74、on,1990,Read,1997)。在這些模型中,某種程度上的空缺促進(jìn)了住房需求者尋找的進(jìn)程,賣方收取更高的價(jià)格來抵消閑置房的損失。這些尋找模型表現(xiàn)了獨(dú)特的住房市場,和在市場均衡條件下合理的住房閑置。最近,Gabriel和Nothaft(2001)把住房閑置分為2個(gè)部分,發(fā)生率和持續(xù)時(shí)間。他們認(rèn)為發(fā)生率與人口的流動有關(guān),持續(xù)時(shí)間與找房的費(fèi)用和住房股票的非均質(zhì)性有關(guān)。他們的研究結(jié)果表明,住宅租金更能反映發(fā)生率而非持續(xù)時(shí)間。</p&
75、gt;<p> 如果房主選擇保持房屋的閑置,而不是售出房屋,這個(gè)決定才是真正的選擇。那就是說,當(dāng)一個(gè)人決定保持空房屋而不依據(jù)當(dāng)前的市場價(jià)格出售,這是因?yàn)樗J(rèn)為等待是有價(jià)值的。如果房價(jià)提高,房屋投入回報(bào)波動大,那么等待會得到更多的收入。</p><p><b> 4.?dāng)?shù)據(jù)和方法論</b></p><p><b> 數(shù)據(jù)</b>&
76、lt;/p><p> 在下一章節(jié)中的經(jīng)濟(jì)依據(jù)是基于各種各樣來源的數(shù)據(jù)的拼湊。但有一個(gè)例外,這些數(shù)據(jù)系列是可以供公共使用的,而且大多數(shù)人可以在網(wǎng)上搜索到。如上所述,我們分析三個(gè)因變量:價(jià)格、空缺和供應(yīng)商的活動。</p><p> 獨(dú)棟房屋價(jià)格可由美國聯(lián)邦住房企業(yè)監(jiān)察辦頒布的大城市住房價(jià)格指數(shù)衡量。這一指數(shù)根據(jù)加權(quán)重復(fù)購買理論定義并從1975年開始所有獨(dú)棟房的房貸款要被聯(lián)邦政府所持有和確認(rèn)。&
77、lt;/p><p> MSA業(yè)主空置率每年由美國統(tǒng)計(jì)局公布的人口普查決定的。</p><p> 我們由在MSA中獨(dú)幢房的建筑許可證衡量供應(yīng)商活動。大多數(shù)先前的房屋供應(yīng)的研究都是基于房產(chǎn)開發(fā)的集合(Topel和ROSEN,1988年,DiPasquale和羅森惠頓,1994,邁耶,和Somervile,2000年)。房產(chǎn)開發(fā)信息在紐約大城市是不可信的。然而,眾所周知,新屋開工許可證的序列卻非
78、常密切,2001;(Evenson,2001)。Somervile ^”其他的研究分析城市數(shù)據(jù)(例如,Poterba,1991年成立;Drieman和Follain Somervile邁耶,,2004;20(1),2000)也依照建筑許可證。獨(dú)幢房的建筑許可證的數(shù)據(jù)由美國統(tǒng)計(jì)局公布并在德州農(nóng)工大學(xué)房產(chǎn)中心的網(wǎng)站上可以利用。</p><p> 我們也使用在三個(gè)公式中若干其他外在變量衡量區(qū)域經(jīng)濟(jì)的重要性。這些變量包
79、括人均收入、Yt、就業(yè)、EMt,人均未就業(yè)轉(zhuǎn)移支付,UNt。這些數(shù)據(jù)都可以在REIS數(shù)據(jù)庫找到。</p><p> 在表格中有一系列變量,定義和符號。腳注i和t代表了由于MSA和時(shí)間的變化而變化的變量。</p><p><b> 5.總結(jié)</b></p><p> 本文利用一組美國大城市在過去14年里的區(qū)域住房市場的數(shù)據(jù)評估了國家和區(qū)域的
80、經(jīng)濟(jì)條件。我們估算業(yè)主房的價(jià)格和閑置率和新建獨(dú)幢房的建筑許可證的外在條件的影響。這些參數(shù)的估計(jì)在二級最小平方的誤差組成成分的框架內(nèi)。</p><p> 實(shí)證模型提供一套連貫嚴(yán)整的經(jīng)驗(yàn)和仿真結(jié)果。這些結(jié)果證實(shí)了區(qū)域經(jīng)濟(jì)的條件,收入和就業(yè)的變化對區(qū)域房屋市場的有重大的影響,同時(shí)他們也認(rèn)為調(diào)節(jié)的滯后進(jìn)程對市場的供給和需求有重要的影響。結(jié)果還首次提供了確鑿的證據(jù)說明業(yè)主房市場的空缺對房價(jià)和供應(yīng)商的活動有重大的影響。結(jié)果
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 外文翻譯--住房市場的經(jīng)濟(jì)基本原理依據(jù)美國大城市的住宅狀況
- 美國大城市的生與死
- 北京經(jīng)濟(jì)適用住房市場狀況分析.pdf
- 外文翻譯----設(shè)計(jì)基礎(chǔ)的基本原理
- [雙語翻譯]房地產(chǎn)外文翻譯--英國和美國的住房市場和政策
- [雙語翻譯]房地產(chǎn)外文翻譯--英國和美國的住房市場和政策(英文)
- [雙語翻譯]房地產(chǎn)外文翻譯--英國和美國的住房市場和政策中英全
- 時(shí)間和頻率的基本原理外文翻譯
- 市場調(diào)查的基本原理
- 2014年房地產(chǎn)外文翻譯--英國和美國的住房市場和政策
- 經(jīng)濟(jì)增加值的基本原理[文獻(xiàn)翻譯]
- 市場經(jīng)濟(jì)基本原理選擇題
- 太原市商品住房市場供需狀況研究.pdf
- 我國城市住房市場供求平衡與發(fā)展研究——以武漢市住房市場為例.pdf
- 2014年房地產(chǎn)外文翻譯--英國和美國的住房市場和政策.DOCX
- 2014年房地產(chǎn)外文翻譯--英國和美國的住房市場和政策(英文).PDF
- 海外住房市場分析報(bào)告
- 礦熱爐的基本原理
- otdr的基本原理
- 城市生態(tài)學(xué)基本原理
評論
0/150
提交評論